\qquad
Final Review - 1 of 3
For full credit circle answers and show all your work. Each problem is worth four points.

1) Find the x-intercepts of $f(x)=x^{2}-4 x-5$ algebraically.
2) Find the vertex and line of symmetry of $f(x)=x^{2}-x+\frac{5}{4}$
3) Determine all real zeros algebraically of $f(x)=5 x^{4}-15 x^{2}+10$ and determine the Multiplicity of each zero.
4) Find a degree four polynomial with zeros at $-3,0$, and 7. Please leave answer in factored form.
5) Divide $10 x^{4}-50 x^{3}-800$ by $(x-6)$ using both synthetic and long division. Long division:

Synthetic division:

Let $f(x)=x^{2}-x+1$ and $g(x)=2 x^{3}$.
6) Find $f(5+h)$
7) Find $\frac{f(5+h)-f(5)}{h}, h \neq 0$
8) Find $f^{-1}(x)=$
9) Find $g^{-1}(x)=$
10) Find $(f \circ g)(x)=$
11) Write an equation which has the shape of $y=2 x^{2}$ but with vertex at $(2,-3)$ and opens downward.
12) Let $f(x)=x^{2}-x+1$ and find:

$$
\frac{f(3+h)-f(3)}{h}, h \neq 0 .
$$

For \#'s 13-17 let $f(x)=|x-4|$ and $g(x)=3-x$.
13) Find $(f \circ g)(x)=$
14) Find $(g \circ g)(x)=$
15) Find an inverse for each equation:

$$
f(x)=x^{2} \quad g(x)=x^{3}
$$

16) Does this equation represent y as a function of x ? $x^{2}+y=4 \quad$ Explain.
17) Find the zeros of the function

$$
f(x)=\frac{x^{2}-9 x+14}{4 x}
$$

17) Let $f(x)=x^{2}-x+1$ and find:
$\frac{f(3+h)-f(3)}{h}, h \neq 0$.
18) Determine the relative minimum or maximum of: $h(x)=3 x^{2}-2 x-5$.
19) Find an equation for the graph below with the given window.

20) In which of the four quadrants is the following inequality true: $x y<0$?
21) A line segment has $\left(x_{1}, y_{1}\right)$ as one endpoint and $\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$ as the midpoint. Find the other endpoint in terms of $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{\mathrm{m}}$, and y_{m}.
22) Find the equation of a circle that has a diameter with endpoints at $(0,0)$ and $(6,8)$.
23) Use algebraic tests to determine if $y=\frac{-x}{x^{2}+1}$ has symmetry through the x-axis, y-axis, or origin.
24) Sketch a scatterplot of the data. Then determine the equation of a line of best fit.

Year	\# of WalMarts
1996	3054
1997	3406
1998	3599
1999	3985
2000	4189
2001	4414
2002	4688
2003	4906

26) Divide: $\left(3 x^{3}-17 x^{2}+15 x-25\right) \div(x-5)$
27) Write $\frac{2}{4-5 i}$ in standard form.
28) Write $\frac{5}{i}$ in standard form.
29) Find all the rational zeros of the function: $f(x)=9 x^{4}-9 x^{3}-58 x^{2}+4 x+24$.
30) Find the upper and lower bounds for zeros of $f(x)=x^{4}-4 x^{3}+15$.
31) Rewrite $\log _{4} 64=3$ as an exponent.
32) Using a change of base property, evaluate: $\log _{3} 7$ to three decimals.
33) Rewrite $5^{3}=125$ as a logarithm.
34) Solve the equation $\left(\frac{1}{2}\right)^{x}=64$ using logarithms.
35) Solve the equation $e^{x}=e^{x^{2}-2}$ using logarithms.
36) The number V of computers infected by a computer virus increases according to the model $V(t)=100 e^{4.6052 t}$, where t is the time in hours. Suppose that BSU has 5,000 computers. Find out how many hours it would take for 5,000 computers to be infected.
37) Solve the following rational equation: $\frac{3 a-1}{a^{2}+4 a+4}-\frac{3}{a^{2}+2 a}=\frac{3}{a}$.
