Math 1470 – Fall 2007 Names_____ Final Review – 1 of 3 For full credit circle answers and **show all your work**. Each problem is worth four points.

1) Find the x-intercepts of $f(x) = x^2 - 4x - 5$ algebraically.

2) Find the vertex and line of symmetry of $f(x) = x^2 - x + \frac{5}{4}$

3) Determine all real zeros algebraically of $f(x) = 5x^4 - 15x^2 + 10$ and determine the Multiplicity of each zero.

4) Find a degree four polynomial with zeros at -3, 0, and 7. Please leave answer in factored form.

5) Divide $10x^4 - 50x^3 - 800$ by (x - 6) using **both** synthetic **and** long division. Long division: Synthetic division:

Let
$$f(x) = x^2 - x + 1$$
 and $g(x) = 2x^3$.
6) Find $f(5+h)$
7) Find $\frac{f(5+h) - f(5)}{h}, h \neq 0$

8) Find $f^{-1}(x) =$ 9) Find $g^{-1}(x) =$

10) Find $(f \circ g)(x) =$

11) Write an equation which has the shape of $y = 2x^2$ but with vertex at (2, -3) and opens downward.

12) Let $f(x) = x^2 - x + 1$ and find: $\frac{f(3+h) - f(3)}{h}, h \neq 0.$

For #'s 13 - 17 let
$$f(x) = |x-4|$$
 and $g(x) = 3-x$.
13) Find $(f \circ g)(x) =$ 14) Find $(g \circ g)(x) =$

15) Find an inverse for each equation: $f(x) = x^2$ $g(x) = x^3$

16) Does this equation represent *y* as a

function of x? $x^2 + y = 4$

17) Let $f(x) = x^2 - x + 1$ and find: $\frac{f(3+h) - f(3)}{h}, h \neq 0.$

18) Find the zeros of the function	19) Determine the relative minimum or maximum
$f(x) = \frac{x^2 - 9x + 14}{4x}.$	of: $h(x) = 3x^2 - 2x - 5$.

20) Find an equation for the graph below with the given window.

Explain.

21) In which of the four quadrants is the following inequality true: xy < 0?

22) A line segment has (x_1, y_1) as one endpoint and (x_m, y_m) as the midpoint. Find the other endpoint in terms of x_1 , y_1 , x_m , and y_m .

23) Find the equation of a circle that has a diameter with endpoints at (0, 0) and (6, 8).

24) Use algebraic tests to determine if $y = \frac{-x}{x^2 + 1}$ has symmetry through the *x*-axis, *y*-axis, or origin.

25) Sketch a scatterplot of the data. Then determine the equation of a line of best fit. # of

of
WalMarts
3054
3406
3599
3985
4189
4414
4688
4906

26) Divide:
$$(3x^3 - 17x^2 + 15x - 25) \div (x - 5)$$

27) Write
$$\frac{5}{i}$$
 in standard form.

28) Write
$$\frac{2}{4-5i}$$
 in standard form.

29) Find all the rational zeros of the
function:
$$f(x) = 9x^4 - 9x^3 - 58x^2 + 4x + 24$$
.

30) Find the upper and lower bounds for zeros of $f(x) = x^4 - 4x^3 + 15$.

31) Rewrite $\log_4 64 = 3$ as an exponent. 32) Rewrite $5^3 = 125$ as a logarithm.

33) Using a change of base property, evaluate: $\log_3 7$ to three decimals.

34) Solve the equation $(\frac{1}{2})^x = 64$ using logarithms.

35) Solve the equation $e^x = e^{x^2-2}$ using logarithms.

36) The number V of computers infected by a computer virus increases according to the model $V(t) = 100e^{4.6052t}$, where t is the time in hours. Suppose that BSU has 5,000 computers. Find out how many hours it would take for 5,000 computers to be infected.

37) Solve the following rational equation: $\frac{3a-1}{a^2+4a+4} - \frac{3}{a^2+2a} = \frac{3}{a}$.